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Diffusion of test particles in stochastic magnetic fields for small Kubo numbers
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Motion of charged particles in a collisional plasma with stochastic magnetic field lines is investigated on the
basis of the so-called A-Langevin equation. Compared to the previously used V-Langevin model, here finite
Larmor radius effects are taken into account. The A-Langevin equation is solved under the assumption that the
Lagrangian correlation function for the magnetic field fluctuations is related to the Eulerian correlation function
(in Gaussian form) via the Corrsin approximation. The latter is justified for small Kubo numbers. The velocity
correlation function, being averaged with respect to the stochastic variables including collisions, leads to an
implicit differential equation for the mean square displacement. From the latter, different transport regimes,
including the well-known Rechester-Rosenbluth diffusion coefficient, are derived. Finite Larmor radius con-
tributions show a decrease of the diffusion coefficient compared to the guiding center limit. The case of small

(or vanishing) mean fields is also discussed.
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I. INTRODUCTION

Plasma confinement due to magnetic fields is the basic
concept for magnetic fusion. Mainly two lines, the tokamak
and the stellarator, are being proposed at the moment to
reach the goal of a well-confined burning plasma. Until the
beginning of magnetic fusion research, the problem of par-
ticle and heat transport is in the focus of theoretical and
experimental investigations. The reason for such an extraor-
dinary interest in this problem lies in the unexpected large
losses caused by anomalous transport. Linear transport
theory has been modified to take care of the geometrical
effects and large mean free paths. The neoclassical theory
(see Ref. [1], and references therein) is a great intellectual
and practical success. Nevertheless, it is not able to resolve
all the problems. As is well known [2], in many cases the
strong deviation of the diffusion rate from classical predic-
tions is due to nonlinear effects caused by (electrostatic as
well as electromagnetic) fluctuations. In the past, many at-
tempts have been made for a self-consistent theory of non-
linear transport; see Refs. [3,4], and references therein. Qua-
silinear theory and transport estimates based on the weak
turbulence description are by far the most successful analyti-
cal approaches. However, it is well known [2] that they are
of limited applicability. Strong plasma turbulence is a very
complex and complicated problem. Analytical evaluations
are generally too difficult, and therefore numerical simula-
tions become more and more important. They lead to a huge
data base with many hints for fundamental transport scalings.

For a better analytical understanding of anomalous trans-
port in magnetically confined plasmas it was suggested, see
Ref. [5], and references therein, to split the problem into two
parts. One part deals with the development of fluctuations,
and the other one considers the (passive) motion of (test)
particles under the influence of the perturbations. Such sepa-
rations are quite common in fluid turbulence where passive
motion of scalars, vectors, particles, etc., has been investi-
gated extensively. In plasma physics there exists an addi-
tional, qualitatively important reason to investigate particle
motion in given stochastic fields. Perturbations in the mag-
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netic field structure are more or less unavoidable because of
errors in the coil arrangements of the devices. In addition,
and recently that aspect became very important, additional
coils are being used in tokamaks to control the particle and
heat loads on the walls [6—8].

Anomalous charged particle transport is also a long-
standing problem in astrophysical issues [9-13]. A variety of
problems, such as low-energy cosmic ray penetration into the
heliosphere, the transport of galactic cosmic rays in and out
of the interstellar magnetic field, the Fermi acceleration
mechanism, and so on, are on the top of the agenda. One of
the new important questions added from the astrophysical
point of view in the present context is, “What are the trans-
port properties in stochastic magnetic fields without a very
large mean field?” Then situations may arise where the Lar-
mor radii are larger than the coherence length.

We shall apply the stochastic differential equation ap-
proach to the problem of transport of charged particles in a
magnetic field [3,14]. In principle, there are at least two ways
to do it. The motion of particles under the influence of a
stochastic magnetic field, and in the presence of collisions,
can be described by the acceleration-Langevin (A-Langevin)
equation. Due to the complexity of this equation, this ap-
proach is not widely used. One can make use of the fact that
in strongly magnetized plasmas, charged particles gyrate
closely to the field lines. Therefore, very often [15-18] the
simplified velocity-Langevin (V-Langevin) model is being
used. The latter approximates the A-Langevin equation for
small gyroradii. It can be derived from the A-Langevin equa-
tion by integration in time and applying the drift approxima-
tion. Thus, the V-Langevin approach assumes very large
(guiding) magnetic fields such that the guiding center picture
becomes meaningful. Note that the stochastic component of
the magnetic field is usually weak, i.e. the stochastic fields
themselves do not justify the drift approximation. When a
strong confining magnetic field is additionally present, such
as in tokamaks, the V-Langevin approach is justified. In sev-
eral papers [18-20] stochastic perturbations in the presence
of a strong mean field were investigated. It was found that
the perturbations have a notable influence on the transport of
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the particles across the mean magnetic field. Two questions
remain: (i) What is the finite Larmor radius correction and
(i) how does the transport looks like when no strong guiding
magnetic field is present? The latter case is realized in many
astrophysical situations with random magnetic fields. To an-
swer the two questions, a procedure based on the A-Langevin
equation is necessary.

In the present paper, we concentrate on the solution of the
A-Langevin equation. The interaction forces are mimicked
by phenomenological damping and acceleration terms. Based
on the general solution of the equation of motion we calcu-
late the velocity correlation function, leading to the diffusion
tensor. Generally, the exact analytical solution of the problem
is not possible, or at least extremely complicated. Neverthe-
less, it is possible to make some estimations in different lim-
iting cases assuming that the random perturbations of the
magnetic field are weak.

The main assumptions of the present work are the follow-
ing. First, we assume static magnetic disturbances and
thereby neglect the electric force on the particles. This is
justified as long as the propagation velocity of the magnetic
fluctuations is small compared to the typical velocity of the
particles. Fast, time-dependent perturbations, which may oc-
cur due instabilities or specific experimental arrangements,
are beyond the scope of the present investigation. Further-
more, we assume Gaussian Eulerian correlation functions

(fulfilling the constraint V.-B =0). The main additional as-
sumption, known as Corrsin approximation [21,22], allows
one to derive equations for the Lagrange correlator. The lat-
ter is the main ingredient for the diffusion coefficient. Re-
cently, interesting developments to incorporate long-distance
correlations into the theory appeared. For example, Ref. [12]
deals with the separation of adjacent field lines in two-
component turbulence consisting of a slab component that
varies only along the magnetic field, as well as a two-
dimensional component that varies only in the two transverse
directions, which seems to be a good model for the solar
wind turbulence. The nonlinear effect of magnetic line trap-
ping on the transport of particles in stochastic magnetic fields
was studied using the decorrelation trajectory method
[23-25]. Compared to these papers, here we neglect the trap-
ping of field lines and allow decorrelations of particles from
the magnetic field lines due to collisions.

The paper is organized as follows. In the next section we
present the mathematical formulation of the problem. The
solution of the equation of motion as well as the velocity
correlation function (VCF), expressed through the Lagrange
correlator of the magnetic field, are presented. As multiple
stochastic processes are involved, we have to average the
VCF with respect to each stochastic variable. The Lagrang-
ian correlation function (LCF) of the magnetic field is iden-
tified as the most important contribution to the VCF with
regard to anomalous transport. In the Sec. III we estimate the
Lagrange magnetic field correlator within the Corrsin ap-
proximation. For the latter, a criterion of validity is known in
terms of the Kubo number [23-25]. Small Kubo numbers
allow the Corrsin approximation, whereas Kubo numbers
larger than 1 correspond to the percolation limit. The Corrsin
approximation allows us to reformulate the problem in terms
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of a differential equation for the mean square displacement.
In Sec. IV we present general results for the Lagrangian
velocity correlations. The latter are the basis for the results of
the corresponding diffusion constants presented in Sec. V C.
The quasilinear, the subdiffusive, and the Rechester-
Rosenbluth [26] regimes, respectively, are found by analyti-
cal treatments of the A-Langevin VCF. The effects of finite
Larmor radii are discussed. Section V C is concluded by the
discussion of the situations without dominating guiding
fields. Numerical simulations, verifying our results, are pre-
sented for typical cases. Finally, in Sec. VI, a short summary
and an outlook to the percolative regime concludes the paper.
Some mathematical details are placed in appendixes.

II. THE A-LANGEVIN APPROACH
A. General formulation

In general, we consider a magnetic field of the form
B =By(bee.+b.e . +be.+be,), (1)

composed of a guiding field Byb, in the z direction and a
perturbation. The factor B, takes care of the dimension of the
magnetic field. We call the x and y components the perpen-
dicular components of the perturbations b=(b,,b,,b,). We
shall subdivide our investigation into two parts. The first case
corresponds to the situation with a strong guiding field
|bo| =&, |b.], |b,|, causing an asymmetry between parallel

and perpendicular directions. Then

)

B =By(boe. +b.e,+bye,), (2)

can be used. For tokamak applications it will be appropriate
to assume such a strong guiding field. Then the Larmor radii
are small. It is expected that results derived from the
A-Langevin equation will agree with those from the
V-Langevin equation, to lowest order.

The second situation corresponds to small or vanishing
guiding fields. In that case

B=By(be,+be, + byey), (3)

should be used. We define a gyro-frequency unit
QO =ZeBy/mc. Here, m is the test particle (electron or ion)
mass, and Ze is the total charge. Then the typical Larmor
frequency is given by Q;=Qb,. The Larmor radius is de-
fined as p,=vy,/(Q2by) with the thermal velocity vy,

The A-Langevin equation is the equation of motion for a
single particle, experiencing the effect of the magnetic field
(including its stochastic contribution) and random collisions
through a. A friction parameter » models the average effect
of these collisions

d Ze
—u=—uXB-1u+a. (4)
dt  mc
Integration of u(z) leads to the trajectory of the particle
R(1)=[{u(t')dt’. We will refer to this trajectory later.
The mathematical description of the problem is not yet
complete. Assumptions on the stochastic properties of the
variables are necessary. We assume
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(@)=0, (ait))a;(ty))=A8,;8(t,-1,), (5)

(by=0, (bi(t))b;(t,)) = :82Lij' (6)

Details of the statistics of the magnetic field will be pre-
sented in the next section.

B. Solution of the A-Langevin equation

When solving the A-Langevin equation, a sequence of
transformations is helpful. The otherwise straightforward
calculation, which is summarized in Appendix A, shows that
the solution can be written in the form

u(t) = R3(— Qbot)G(O,t)uoe_V’ + R3(— Qbot)e_yt
t
XJ.GUZﬂRﬂQbMUaOUerﬂ. (7)
0

We introduced the rotational matrices R;(«) of the SO(3)
group and the propagation function G(,,f;) (Greens func-

tion)
G(tz,t1)=7[exp<—ﬂfl V(z’)dt’)]. (8)

2

Here, 7'is the time ordering operator. The operator V is given
by

0 -V V()
vity=| V.() 0 -V )
=Vy(0) V() 0
The entries are
V(t) = cos(Qbyt)b, (1) — sin(Qbyt)b (1), (10)
V(1) = sin(Qbt)b,(t) + cos(Qbyt)b,(1), (11)
V.(0)=b(1). (12)

A special solution exists when no perturbation is present
(b=0),

u(?) = n(1)
= R3(— Qbot)lloe_w + R3(— Qbot)e_yt

t
fomwwmwmen (13)
0

0
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The correlation functions in the unperturbed case

2
Yin

.1+ 79, (1) = =7 exp(=vr)cos(Qby7),  (14)

02

(p(t+ D)) = Tth exp(= v7), (15)

correspond to classical transport. The trajectory in the unper-
turbed regime is a combination of helical motion and expo-
nential damping given by Ry(t)=[{»(¢')dt’'. With this defi-
nition, we shift the problem of averaging over collisions and
initial velocities to the simpler task of averaging the new
stochastic variables 7. Comparing Egs. (7) and (13), we can
take care of the perturbation field by using the propagation
equation in the form

u(r) = Rs3(— Qbyt)e™'G(0,1)R5(Qbyt) (1) (16)

This procedure is in agreement with that for the V-Langevin
equation. It still contains the effects of particle gyration. We
can further simplify for 8<< 1, which allows us to expand the
propagator in the form G(0,7) =1+ [(V(¢')dt'. The final re-
sult is

t

uU):nU)+J‘RJ—(Hmﬁé”VUURﬂﬂbdhﬂﬂdﬂ.
0

(17)

C. The velocity correlation function

The transport of particles can be deduced from the veloc-
ity correlation function. Once the Lagrangian velocity corre-
lation is known, the mean square displacement (MSD) and
the diffusion coefficient are typically obtained from the
Green-Kubo formula

&, . .d
ﬁ(fs”,? = ZED(Z‘) = (((ui(t)u(t))n) 1))

i=X,,2. (18)

The Green-Kubo formula connects the MSD, respectively
the running diffusion coefficient D(¢), with the velocity cor-
relation function. It should be solved with the initial condi-
tions D(0)=0 and (5r?(0)>=0. The solution (17) can be used

to construct the perpendicular velocity correlation

5]

0

u(t)u,ty) = n(t) n(ty) + Q2771(t1)771(t2){f l sin[Qby(7 = ;) ]b.(7) + cos[Qby(T; - tl)]by(Tl)dTIJ sin[Qbo(7, = 15)]b.(75)

+ cos[Qby(7, - a)]by(mdfz} + (1) 7 (02) f 1 f b (r)b.(m)drd. (19)
0 0

026404-3



M. NEUER AND K. H. SPATSCHEK

The influences of the magnetic perturbations appear explic-
itly. We shall call the contribution from the perturbation
terms the anomalous contribution, thereby distinguishing be-
tween classical transport, described by Eq. (14), and the
anomalous transport. We write

(1) u,(ty) = [ () (1) 1 + [, (1)), (1) 1N, (20)

The parallel velocity correlation is formulated in a similar
manner,

u(t)u (ty) = n,(t)) (1) + D[ (1) 1) + 7,(t) 7,(15)]
Xf l f 2COS Qbo[ll - T — ([2— Tz)]
0 0
Xbi(’Tl)bi(Tz)dTlde. (21)

Note the important fact that the two expressions (19) and
(21) coincide for by— 0. Without the guiding field, there is
no preferred direction, and the transport coefficients for par-
allel and perpendicular transport are evidently identical. In
Ref. [9] this tendency was observed numerically. It is an
essential advantage of the A-Langevin approach to include
the limiting case consistently. Any method based on the guid-
ing center assumption fails to describe the transition.

D. Strong guiding fields

The velocity correlation functions still require averaging
with respect to the stochastic variables. Now, we restrict our
analysis to the case of (relatively) strong guiding fields,
by>1. This corresponds to a magnetic field configuration
described by Eq. (2). In such a case, we can neglect the
effect of the perturbations in the z direction and apply the
approximations (5) and (6) developed in Appendix B. The
result is

<ux(f1)ux(f2)>bA,l\i,H = #( 7,(t)) 7,(12) b (1)D (1)) L)
0

1
+ QTbgm(tl) 7,(6) by ()b (1)) 1))
=710 1 (22)

A specific order of averages occurs. The average of the par-
allel collisions, covered by 7,, is especially involved since
we must also include all dependencies on 7, remaining in the
perturbation fields b. The first term on the right-hand side of
Eq. (22) L9, does not include any effects of the finite Lar-
mor radii. It describes the dynamics similar to the
V-Langevin equations from a pure guiding center perspec-
tive. First order Larmor radius effects are included in the
second term L") (and all higher order corrections can also be
found by the method sketched in Appendix B). At this stage
we are left with the problem to find appropriate expressions
for the Lagrangian b-field correlations, respectively the cor-
relations for the derivations of the b fields.
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III. MAGNETIC FIELD CORRELATIONS
A. Eulerian correlation function

In this section we still assume strong guiding fields. Ap-
propriate estimates for the Lagrangian correlation functions
have been intensively discussed in literature. Common ap-
proaches start with the spatial Eulerian correlation function
for the two-dimensional perturbations, in Gaussian form

(b(r)b(0)) = E(r)

( 1-yA> 0 ) (
0 1—an2 )P

xz + y2 ZZ )
2 T2/
NN
(23)

Two important length scales define the stochastic magnetic
field fluctuations, namely, the correlation lengths A\ and A | .
Note that we shall assume finite parallel correlation lengths
for the b perturbations such that a slab model [12] is not
covered by the following treatment.

It is convenient to introduce also the Fourier transform of
b(R),

b(R(?)) = f b(k)exp(- ik - R(7))dk. (24)
The correlation spectrum of Eq. (23) is then given by

E(k) = (k% &~ kik))A(k) (25)

with

1 1
Alk) = <2w)‘3’2m‘iﬂ2exp<‘ SNk - ghiki) . (20)

B. The Corrsin approximation

The widely adopted approximation method due to Corrsin
[21] assumes that the correlation function and the trajectory
can be averaged independently. Details of this procedure can
be found in Ref. [22]. Within the Corrsin approximation, the
Lagrangian correlator is calculated via the integral

(byy(0b,,(0)) = f E(r)(8(r —=R()hpdr.  (27)

The averaged propagator (S(r—8r(r))) can be calculated by
using the Fourier expression of the & distribution and the
Fourier transform of E(r),

0

<bx,y(t)bx,y(0)>h = f E(k)<exp(_ ik - R(t))>bdk (28)

The trajectory R(r) has to be inserted into the Corrsin ap-
proximation. Since the trajectory depends on 7, it has to be
included in the averaging procedures regarding parallel and
perpendicular motion.

The second term on the right-hand side of Eq. (22) re-
quires the correlation of the derivatives of b. For that we
differentiate Eq. (24) in time,
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b'(R(1) =—i f k- R’()b(K)exp(- ik - R())dk, (29)

which directly leads to the expression

o0

(b}, ,(0),=—| (k-R'(1)*E(k)

X{exp(- ik - R(2)))pdK. (30)

Equation (27) is restricted to a certain domain of validity,
defined in terms of the Kubo number

_ Ay

K= .
boh |

(31)

The Kubo number is generally defined as the ratio of the
distance a particle travels during an autocorrelation time over
the correlation distance. Large Kubo numbers lead to a fail-
ure of the independence hypothesis, and in this case Eq. (27)
is not applicable. Some recent works [23-25] presented suit-
able replacements for the Corrsin approximation which are
valid for larger Kubo numbers. As a matter of fact, the deco-
rrelation trajectory method (DCT) is quite involved and its
application within the A-Langevin framework will be pre-
sented in a separate work. For magnetic fluctuations obeying
K <1, the Corrsin approximation remains valid.

IV. LAGRANGIAN VELOCITY CORRELATIONS
A. The guiding center limit

Strong guiding fields, by> 1 reduce the Larmor radius of
the gyration around the field lines. Obviously, to zeroth or-
der, the position of a particle can be approximated by its
guiding center, and the influences of fluctuations aligned
with the mean field can be neglected, i.e., b,~0. Anomalous
transport is then dominantly described by the first term on
the right-hand side of Eq. (22).

Let us further define two functions determining the clas-
sical transport behavior, namely,

o (1= f ) 7N = x (1= (32)
and

Yo7 = f 1 f () (e

_ 2X1
14

(vr=1+e"). (33)

Here, the classical expressions

2 2

UmnV Ut
= = - 34
X1 2y Xi=3, (34)

have been used. The function L,“:<z‘>‘ri2(t)> represents the
mean square displacement in the classical case. For
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L0~ éwz(n)nz<r2><bl<r1)m<t2>>b>u. (35)
0

we apply the Corrsin approximation, transforming the corre-
lation function into the Lagrangian frame of reference

[

10 _ é EK){7,(1,) 7.(t2){exp(— ik - R(1)))p) | k.
0 —00

(36)

The perpendicular average is calculated using the cumulant
expansion with the result

oo

0 —00
><< n.(t+7) nz(t)exp<— isz nZ(T')dT’)>
t Il
Xexp(— %kﬁ(éﬁ) - % §<5y2>)dk. (37)

Note that the mean square displacements (5x?) and (Sy?) still
contain the anomalous parts and should not be confused with
the classical ¢, | terms. The combined average of the paral-
lel motion is performed using the prescription shown in Ap-
pendix C. We obtain

©

1 - |2 1
L= E(k)[g‘he‘”’ - k?&}exp(— 5’6?44)
0 —00

xexp<— %k§<5x2> - %k§<5y2>)dk. (38)

Inserting Eq. (25), and performing the integration over k, we
finally find the Lagrangian velocity correlation function of
the guiding center motion

Blvh, W o 1
2 2
3| 2 Y (1 . ﬂg )
Aj
v 1
523\ 2 172
<1+—< o >) <1+£2')
In the last step we used the symmetry of the system (&x?)
=(8y%).

LO =

(39)

B. Finite Larmor radius corrections

In the case of strong guiding fields, the main advantage of
the A-Langevin approach is the capability to calculate finite
Larmor radius corrections. As long as the guiding center ap-
proximation can be applied, the system is determined by L.
For smaller guiding fields, the gyration around the field lines
contributes to the transport, and finite values of the Larmor
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radius must be taken into account. Depending on the ratio
B/b, of fluctuations and guiding field, the finite Larmor ra-
dius effects can become important. For b,> 3, the Larmor
radius is identified by p;=vy/(Qby). Finite Larmor radii

PHYSICAL REVIEW E 73, 026404 (2006)

change the transport behavior and appear in Eq. (22) via the
additional (first order) perturbation term LV. We will still
assume that the guiding field is predominantly stronger than
the fluctuations. The correction turns out to be

f {E(k)[<(kinx(t1)m(tz)+k§77y(t1)77y(t2))exp<—ikx f | nlt')dt’ — ik, f l ny(t’)dt’)>

2 5}

X nz(tl) ﬂz(fz)eXP(— ikzj 1 ﬂz(t,)dtl> + k§< ﬂ?(tl) ﬂf(fz)e?(P(— isz 1 nz(t’)dt,)>
t I t Il

2

a1 51
X exp(—ikxf nx(t')dt'—ikyf ny(t')dt’)
1

2 5]

The last term on the right-hand side can be approximated by

k?< n?(tl)nf(tz)exp(— isztl Uz(l')dt’>>
t I

2
4,2 1,
~ vyk; exp —Ekzl//H . (41)

This approximation has been checked a posteriori. Addition-
ally, we used the fact that the quadratic 7, terms obey a long

tail correlation which can be estimated by <77§(f1)7l§(f2)>||

v

The other essential steps are similar to those of the previ-
ous section. Finally, the finite Larmor radius correction is
given by

2 - 2
10 &L(O) 4y ve™” 18¢7
T M v\ g\
th x'j<1+—2 >\1<1+—2
Ay Ay
Pilgz vtzh

2 2 32" (42)
by 4>\”(1+f—j) (1+%)
il II

Here, L(xo) means Eq. (39) in the limit A | — o, and LV is
Lo
a correction term affecting each regime stated in the previous

section. For small Larmor radii the influence of this correc-
tion vanishes.

V. DIFFUSION COEFFICIENTS
A. Guiding center results

Equation (39) can be introduced into Eq. (18) yielding a
differential equation for the perpendicular mean square dis-
placement and the running diffusion coefficient. The result is
equivalent to the correlation functions found in Refs. [15,18]
(V-Langevin equation plus Corrsin approximation) and [17]
(V-Langevin equation plus MDIA approximation). The latter

2

] dk. (40)
1L

treatments are restricted to the guiding center approximation.
It is natural that the corresponding result appears here as the
zeroth order term in a perturbation series in terms of the
Larmor radius. Thus, we have reproduced (in the strong
mean field limit) the well-known diffusion regimes in the
guiding center approximation. We will not go into the details
and only summarize the important regimes with the corre-
sponding references.

1. The quasilinear regime

The quasilinear regime refers to a domain in which colli-
sions are absent, v=0, and the perpendicular correlation
length tends to infinity, A | — . No implicit dependence on
the perpendicular MSD remains. The functions ¢, and ¢; can
be expanded in power series at ¥=0, yielding ¢,=(v/2)t
and =(v3/2)72. Obviously, only a ballistic motion along
the field lines prevails. Equation (18) is solved by straight-
forward integration and leads to the quasilinear diffusion co-
efficient (— o),

D=~ Lo,Ex (43)
ql \5 lhb% Il

2. The subdiffusive regime

Contrary to the quasilinear regime, we allow here for col-
lisions of the particles along the field lines, but still keep the
condition A\ | — . Of course, the first assumption (on the
collisions) is somehow artificial. The transport in the z direc-
tion is now diffusive and the anomalous part of the perpen-
dicular transport becomes subdiffusive [15].

3. The Kadomtsev-Pogutse regime

Two diffusion scalings are often referred to as
Kadomtsev-Pogutse [27] limit. The first one, which we will
refer to as percolation limit, is characterized by an infinite
parallel correlation length \j—o°. Integration of Eq. (18)
leads to a diffusion coefficient D= (8/by)\ | vy. In a series
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of papers [23-25] it was shown that this prediction is not
correct. The problem is caused by the failure of the Corrsin
approximation for high Kubo numbers. By the present re-
striction to small Kubo numbers we exclude this case.

If the decorrelation of the particles is caused by classical
collisional events only, the anomalous terms in Eq. (39) can
be neglected and (Sx*(¢))=1, should be used. Furthermore it
is assumed that collisional effects are more important than
the changes due to the magnetic field perturbations. This
leads to the second diffusion scaling known as Kadomtsev-
Pogutse limit [12]

3 BN
DG~ =75y, x- 44
Kp ™ bé . XXl (44)
Note that here collisions cause decorrelations from the field
lines.

4. The Rechester-Rosenbluth regime

A situation with finite correlation lengths, strong colli-
sionality, and larger B than in the Kadomtsev-Pogutse re-
gime, corresponds to the Rechester-Rosenbluth regime [26].
Using approximations for short and long times, the correla-
tion function (39) can be shown to reflect the characteristic
scaling of this regime, as was pointed out in Ref. [17]. We
have

2\2 X
DY ~— -, (45)
2y 22
2
T x, Ly
where
2 b\’
L= \Em (40
Il

is the Kolmogorov length.

B. Finite Larmor radius corrections
1. The Rechester-Rosenbluth regime

We start with parameters in the Rechester-Rosenbluth re-
gime. Similar dependencies due to finite Larmor radii occur
in the other parameter regimes, as will be discussed later.
First, we demonstrate the modification of the diffusive be-
havior due to finite Larmor radii by showing the time depen-
dence of the MSD. Together with the zeroth order terms, the
correlation function has to be introduced into the Green-
Kubo formula to calculate the MSD. Its evaluation was done
numerically. Typical results are shown in Fig. 1. Generally,
the increase of p; leads to a reduction of the diffusion coef-
ficient. We varied the Larmor radius by reducing the mean
field by. In the uncorrected L case, for the chosen param-
eters the scaling of Eq. (45) holds and the diffusion increases
with decreasing field strength b,. The first order term L
causes a significantreduction of the transport.

Figure 1 clearly shows that the running diffusion coeffi-
cient D(r) converges to a constant value (here and in the
following called the diffusion coefficient). The dependencies
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0.04r

D)

0.03y

0.027

05 1 2 5 10 50 100

FIG. 1. Solution of the Green-Kubo equation with the correla-
tion function L only (dashed lines) and L+ L1 (solid lines) for
two different values of by (strong guiding field), respectively.
Shown is the diffusion coefficient D (unit vtzh/ ) versus time t (unit
Q7"). The parameters are \j=\, =5.87[vy,/Q], €=B/by=0.3, and
v/Q=0.2.

of the diffusion coefficient (with Larmor radius corrections
in the Rechester-Rosenbluth regime) on physical parameters
such as temperature, fluctuation strength, etc., is shown in
Figs. 2 and 3. Figure 2 shows a quadratic decrease of the
diffusion coefficient with increasing strength of the Larmor
radius. Obviously, the Larmor radius depends on temperature
and magnetic field strength. In Fig. 3 one first recognizes the
strong dependence of the diffusion coefficient on the Kubo
number K~ 3, known from the original Rechester-
Rosenbluth scaling [26] with the perturbation strength 8. For
all Kubo numbers (<1) the diffusion is reduced due to finite
Larmor radii.

R e -

a2 0.2

finite Larmor radius theory

0.1r

P

FIG. 2. Effect of finite Larmor radius corrections on the diffu-
sion coefficient in dependence of the Larmor radius, calculated in
the Rechester-Rosenbluth parameter regime. Shown is the normal-

ized diffusion coefficient D=D/ (v)\i) versus the normalized Lar-
mor radius p;=p; /N for K=0.4.
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0.2 y .

0.151

2 0.1r

0.05¢

0O 0.1 0.2 0.3

FIG. 3. Effect of finite Larmor radius corrections on the diffu-
sion coefficient in dependence of the Kubo number K, calculated in
the Rechester-Rosenbluth parameter regime. Shown is the normal-
ized diffusion coefficient D=D/ (v)\i) versus K for the three values
0, 0.4, 0.8, respectively, of the normalized Larmor radius
pL=pL/N.

2. The Kadomtsev-Pogutse regime

In the weakly anomalous regime, the finite Larmor radius
corrections to the zeroth order result (44) can be calculated
analytically. After some straightforward integrations we ob-
tain from the Lagrange correlation (42)

3 N X
D(]) ~_ 2K2_l AL ) 47
K 2 P A Xl ’ 47)

As before, an increase of p; leads to a reduction of the dif-
fusion coefficient. The analytical formula (47) clearly shows,
in addition, the dependencies on the correlation lengths, the
collision frequency, and the perturbation strength.

3. The quasilinear regime

Also in the quasilinear regime, the finite Larmor radius
corrections to the zeroth order result (43) can be calculated
analytically. After some straightforward integrations we ob-
tain from the Lagrange correlation (42)

1 g1
DW=~ _ —y p25—.
al 4\”5 thpL b% )\H

(48)
Again, an increase of p; leads to a reduction of the diffusion
coefficient. It is interesting to note that in Eq. (48) the de-
pendence on A is opposite to the zeroth order result (43).

4. Comparison with numerical simulations

In order to independently check the analytical results, we
performed numerical simulations of the A-Langevin equa-
tion. The numerical procedure is based on the Monte Carlo
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guiding center approximation

(3x(1)

FIG. 4. Numerical simulation of the A-Langevin equation and
comparison with the analytical predictions, for the case of a strong
guiding field. Shown is the mean square displacement ((dx)%)
(unit vfh/Qz) versus time t (unit 100 Q~'). The parameters are
N=2N =2[ve/Q], €=B/by=0.4, by=1.5, and v/Q=0.05.

principle. Equation (4) is solved with a standard Runge-
Kutta method. A white noise process models the collisions.
The magnetic fluctuations are realized by a random number
generator which picks correlated random numbers from the
Eulerian correlation function. We propagate an ensemble of
40 to 100 particles through the stochastic environment and
measure the MSD. We find excellent agreement with the ana-
Iytical predictions presented in this paper. The numerical
analysis was performed in parameter regimes where the in-
fluences of finite Larmor-radii occur. Figure 4 shows the
simulation results for the perpendicular MSD within the
Rechester-Rosenbluth regime (strong collisionality and finite
NN ). The guiding center prediction and the influence of
the correction terms are also shown. The strength of the
mean field was decreased to a value where effects of the
correction terms are pronounced. Of course, for stronger
guiding fields the difference between the guiding center pre-
dictions and the present theory will decrease. The compari-
son leads to an excellent verification of our theoretical pre-
diction. Minor deviations of the simulation from the first-
order theory are due to higher order Larmor radius effects.
The concordance of the Monte Carlo solutions and the ana-
lytical results is also a solid confirmation of the accuracy of
the Corrsin approximation for small Kubo numbers.

C. Vanishing guiding fields

So far we described the transport of particles in the pres-
ence of strong guiding fields and additional stochastic pertur-
bations. The situation changes considerably when the mean
(guiding) field is no longer present. The total B field is then
given by Eq. (3), and the particle transport takes place in a
dominantly stochastic environment. Some remarks on this
case were made already in the appendix of Ref. [9]. We now
present predictions for the collisional case.
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1. Analytical estimates

The solution (16) of the A-Langevin equation simplifies to

u(r) = G(0,0) 5(r). (49)

We assume that the averages over the collisions (we cannot
distinguish any directions) and the b field can now be applied
independently, yielding

2
() = e (G(0.0). (50)

Using the cumulant expansion and the properties of the ma-
trix V, we find the asymptotic expression

(G(0,1) =exp(-2Q°y), (51)

with

Y= f (b(7)b(0))d. (52)
0

The correlation function of the magnetic perturbation field
will be calculated within the Corrsin approximation. The al-
gebra is similar to that presented in the previous section. We
get

* - 1
y= f f E(k)exp(— —k2XT>dkd7. (53)
0 Jk>2mlp, 2

Essential for the calculation is the heuristic limitation [9] of
the effective integration region, namely, that the Larmor ra-
dius of the particles has to be larger than the wavelength of
the modes in Eq. (53). Because the particles follow the field
lines when their Larmor radius is smaller than the wave-
length of the modes, we consider only the modes with

The collisional diffusion coefficient (in each direction) is
given by y=v7/2v. In Eq. (53) we use the one-dimensional
perturbation spectrum

_ 1
E(k) = 2m\ exp<— Ekz)\z). (54)

Here, A\=Nj=\ . The k integration leads to

* fe(\2mIN2 + y7
yzf ﬁz)\er c(\2my XTPL)dT- (55)
0

YN + X7

The integral can be performed when the approximation
2
erfc(x)/x=e™ /x is used,

2
A A
y = 'BJL erfc( \577_) ) (56)
N2y PL

Finally, we substitute the velocity correlator into the Green-
Kubo formula and obtain for the MSD
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64 T
60 classical diffusion |
N‘;‘/
<
©.
56
52 with stochastic magnetic field
3 4 5 6

FIG. 5. Numerical simulation, with and without stochastic mag-
netic fields, respectively, in the case of no guiding field. Straight
lines indicate the analytical predictions. Shown is the mean square
displacement {(&x)%) (unit vlzh/ 0?) versus time ¢ (unit 100 Q). The
parameters are A=0.1[vy,/Q], B=0, and B=0.9, respectively,
byp=0 and v/Q=0.2.

2
o Um

(&)= V+2027t. (57)
The perturbation fields acts as an effective friction. Strong,
uncorrelated magnetic fluctuations will reduce the diffusion
in the same way as the collisions. Note that vy vanishes for
N> p. In that case the fluctuations have long-range correla-
tions, and the magnetic field does not change significantly
over a certain distance.

2. Comparison with numerical simulations

The analytical prediction will now be compared with nu-
merical simulations. Figure 5 shows simulations in the limit
of vanishing guiding fields. Typically, the influence of mag-
netic fluctuations is then very small; one has to find the ex-
tremum of Eq. (56). We set up a suitable parameter regime to
make the effect of the perturbation field visible. As can be
seen from the figure, the stochastic field acts like an addi-
tional friction and reduces the gradient of the MSD. Again
we found very good agreement with the analytical predic-
tions. The latter are shown by the straight lines.

VI. CONCLUSIONS AND OUTLOOK

In this paper, on the basis of the A-Langevin equation, we
have investigated finite Larmor radius effects for the diffu-
sion of test particles in the presence of stochastic magnetic
fields. For very strong guiding (mean) magnetic fields, to
lowest order we recover the guiding center result which has
been derived previously on the basis of the V-Langevin equa-
tion. Finite Larmor radii reduce the transport, compared to
the guiding center prediction. When no strong mean mag-
netic field is present, the A-Langevin equation allows one to
calculate the diffusion under the influence of magnetic per-
turbations. In the collisional case, one obtains only small
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deviations from the classical result. Analytical theory is in
excellent agreement with numerical simulations.

The main assumption of the present theory is the Corrsin
approximation. The latter requires the smallness of the Kubo
number K. For K<1, numerical calculations support the
Corrsin approximation. We also made first calculations in the
percolation limit K> 1. Preliminary results indicate a reduc-
tion of the diffusion coefficient below the value predicted by
the Corrsin approximation. Details on the percolative trans-
port and a suitable analytical approach based on the
A-Langevin framework will be presented in a separate paper.

ACKNOWLEDGMENTS

This work was performed under the auspices of the SFB
591. Interesting discussions with Dmitrij Lesnik are grate-
fully acknowledged.

APPENDIX A: FORMAL SOLUTION OF THE A-LANGEVIN
EQUATION

When solving the A-Langevin equation, we introduce the
rotational matrices

R(n=e, i=1,2,3, (A1)
and use the generators of the SO(3) group,
00 O 0 01
01 0 -1 00
0 -10
Isb=|1 0 O (A2)
0 0 O
Defining 1=(/;,1,,5) and introducing
U(2) = e "Rs(— Qpbot)u(z), (A3)
a(r) = e"R5(Qpbon)al(t), (A4)
V(t) = Rg(Qobot)b(t)l R3(— Qobot) N (AS)
Eq. (4) can be written as
d
Zﬁ(t) =V(nu(r) +a(). (A6)
This leads to the solution
t
u(r) = G(O,t)ﬁ0+f G(t',tya(t')dt' . (A7)
0

The latter is given in terms of the Greens function G(t,,1;)

[28]
G(ty.1)) =T[exp<— Qoftl V(t')dt’)}, (A8)

2

where 7 is the time ordering operator. Evaluating the opera-
tor in the integrand, we find Egs. (9)—(12) used in the main
text
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APPENDIX B: MULTIPLE SCALES IN EVALUATING
INTEGRALS

The expressions (19) and (21) contain, after integration,
products of trigonometric functions and the magnetic pertur-
bation fields in the integrands, e.g.,

Il(t)=J cos[T‘l(t—t’)]by(t’)dt’, (B1)
0

L) = f sin[T71(t = 1")]b,(¢")dt' . (B2)
0

Here, T=(Qb,)~", and we introduce the characteristic time 7
for the b variations. In the case of strong guiding fields, &
=T/7<1. The integrals can be evaluated systematically by
using a multiple scale perturbation method, which leads to

I(t) = Tby(t)sin(T’lt) - sz;,(t) - sz;(t)cos(rlt) +0(&?),
(B3)

I,(t) = = Th,(t)cos(T"'t) = Th,(t) — T*b.(t)sin(T't) + O(&?).
(B4)

The remaining trigonometric terms vanish by averaging over
the fast oscillations, and one obtains

I(1) =~ = T°b)(1), (B5)

L(1) = = Th,(1). (B6)

APPENDIX C: COMBINED AVERAGES WITHIN THE
CORRSIN APPROXIMATION

For the evaluation of the Lagrangian velocity correlation
we perform the following calculation which is based on the
cumulant expansion with Gaussian statistics:

<a(tl)a(t2)exp<— ikf l a(t')dt')>
1 & ("
= ?(%1 &t2<exp(— zkfl a(7)d7)>
P

1 1 o (h
~ E&tl PPy exp(— Ekzj f <Cl(7'])a(7'2)>d7'1d7'2)
1
= ((a(t))a(ty)) - kz@i)f?xp(— 5k2%>- (C1)

The functions ¢, and #, are defined similarly to Eqs. (32)
and (33). The procedure (C1) allows us to evaluate the com-
bined average which appears within the calculation of the
Lagrangian velocity correlators. An equivalent average in-
volving a series expansion of the exponential function was
used in Ref. [15].
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